
Virtual Character Locomotion using Simulated Annealing
Eduardo Poyart – UCLA – March 2010

CS 275 – Artificial Life – Prof. Demetri Terzopoulos

Abstract

In this work, low level control of three different virtual

characters is achieved using simulated annealing to make

these characters perform locomotion. Aspects that were

studied include joint positioning and their characteristics

(including degrees of freedom), control scheme, neural

network inputs and outputs and annealing schedule. A visual

annealing approach optionally allows the experimenter to

observe the annealing process animated as it happens. A

modeling pipeline based on Blender provides a sofisticated

way to model characters, and the character loading and

assembly in the runtime is data-driven. Three characters

were created and used: a spider, a snowboarder and a cyclist.

Good results were obtained with the spider and the cyclist;

they successfully learned to locomote on the virtual terrain.

1. Introduction

Animating virtual characters using dynamic control under

physics is a very attractive possibility. It allows those

characters to respond better to unforeseen events on the

environment, as compared to predefined, fixed animations.

Even more interesting is teaching those characters using

learning approaches such as simulated annealing or genetic

algorithms.

In this work, I employ simulated annealing to teach virtual

characters to locomote on the environment. Joint control is

done either by frequency-domain controllers or neural

networks in different characters. The characters that were

created and used for this project were a spider, a

snowboarder and a cyclist. Rather than making the annealing

process completely opaque, I used a visual annealing

approach. Visual annealing refers to the fact that the

animation can be seen in real-time during the annealing

process, if that is desired. This can provide important clues

as to how the character is behaving during its learning.

Related work is presented in section 2. In section 3,

Locomotion, I classify the characters with respect to their

locomotion characteristics. In section 4, Simulation System,

I show the main aspects of the simulation system that was

developed for this project, as well as its two open-source

components: the physics simulation library Open Dynamics

Engine and the modeling software Blender. The annealing

schedule is described in section 5. In sections 6, 7, and 8, the

three virtual characters are described in detail. Results are

discussed in section 9, and section 10 is the conclusion.

2. Related Work

The main inspiration for this work came from [GRZESZCZUK

AND TERZOPOULOS 1995], in which sharks and other animals

are modeled using mass-spring systems and learn to swim

through simulated annealing. The method of simulated

annealing, described in detail in [KIRKPATRICK, GELATT AND

VECCHI 1983], is a global optimization method that is capable

of finding parameters in a high dimensional space that

optimize an objective function. It was used here to find

motor controller parameters for all three virtual characters.

In [GRZESZCZUK, TERZOPOULOS AND HINTON 1998], a neural

network is used for animation control of physics-based

models. The basic ideas of each of those three works are

combined here. In [HODGINS ET AL. 1995], many human

characters perform different types of athletics, including

bicycle riding. In that work the actuation parameters were

manually set up.

3. Locomotion

Virtual characters can be classified according to their

stability. The spider is a stable character: it does not fall or

flip over when left alone in the simulated world. The

snowboarder and cyclist are unstable: they need active

control in order to stay upright. Another classification

scheme, which is orthogonal to this one, is related to

whether the character locomotes with cyclical control. The

spider needs to move its legs in a certain cyclic way. A

snowboarder does not need cyclic motion if we think of him

as just sliding down a track; what he needs to do is maintain

balance and respond to eventual bumps on the ground. A

cyclist is a hybrid case: he needs both to cycle his legs and

maintain balance. However, the model implemented in this

work glides down an inclined path. He uses his potential

energy and does not need to move his legs, and is therefore

analogous to the snowboarder whose main objective is to

maintain balance and glide down as far as possible.

In view of this, the characters can be divided into two

groups. The spider is a character that needs to move its legs

and doesn't need any sensory input. For this case, a

frequency domain controller was used. The snowboarder and

the cyclist, on the other hand, are characters that don't need

cyclic motion but need sensory input in order to keep

balance. To achieve sensory control, a neural network was

used for the snowboarder and the cyclist instead of a cyclical

motion generator.

4. Simulation system

A custom learning and simulation system was written, using

the Open Dynamics Engine [ODE], an open-source

software, as a physics simulation provider. ODE implements

a variation on the integration scheme described by [BARAFF

1997]. A modular diagram of the system is shown in Figure

1. Modeling is done in Blender, an open-source 3D

modeling tool [BLENDER]. A custom Blender exporter, written

in Python, makes the model available to be used by the

system. The modeling process is explained in detail below.

Depending on the model used, either a Frequency Domain

Controller or a Neural Network is active controlling the

model. During the annealing phase, the Annealing module

drives the simulation and controls the FDC and NN

parameters. During annealing, the renderer can be either

activated (visual annealing) or deactivated. When

deactivated, the system can be compiled on a fast non-

graphical machine such as a multi-core server (although no

multithreading was implemented so far). In the experiments

performed at UCLA, the machine lion.cs.ucla.edu was used

for non-visual annealing.

Once annealing is done, the system can be set up to “play

back” the model using the neural network or frequency-

domain controller that was obtained. During this play back

phase, which is in real time, the user can interact with the

model by dragging it around with the mouse. This feature

proved very useful even before the annealing for the purpose

of testing the various stiffness, damping and friction

parameters in the model and the world. After annealing, this

feature was used to prove that the model could locomote in

different directions and through different areas of the terrain

(with diverse obstacles). This indicated that the controllers

were not overfit.

Modeling was done using the open-source software Blender.

This software has an export plug-in system which consists of

Python plugins that access the Blender API. There is an

existing plug-in that exports to the X3D format, a standard

for 3D scene description [WEB 3D CONSORTIUM]. I customized

this X3D exporter to include information about joints and

limits. To represent a joint, a small box object can be used.

Its center represents the position of the joints, and its axes

are aligned with the rotation axis of the joints. More detail

can be seen in [POYART 2010], another project developed in

parallel with this one. In that work, an articulated Mars rover

was modeled and exported using the same system.

The modeling process is as follows. Models are created in

Blender using boxes, cylinders and spheres. Joints are

created with parameters that indicate the name of the objects

they attach to, and with position and orientation set

Physics
(ODE)

NNFDC

ModelExporter

Modeler
(Blender)

Renderer
(OpenGL)

Annealing

Figure 1: System components. Arrows represent information flow.
FDC is the Frequency Domain Controller. NN is the Neural
Network.

Simulator

according to the desired rotational axis. The model is then

exported using the customized X3D exporter. A C++ class,

Model, is the run-time representation of the model. It has the

ability to read X3D files, initialize the model in ODE, render

it, and expose its characteristics to other parts of the system.

This modeling pipeline was extremely useful for quickly

creating models and experimenting with them. It makes the

system data-driven, reducing the need to change source code

when using different models. Its usefulness was proven in

the Mars rover project mentioned above. Other researchers

at UCLA's MAGIX lab have also expressed interest in using

it. I intend to continue developing it and publish it as open-

source.

5. Annealing

The annealing algorithm was based on [KIRKPATRICK, GELATT

AND VECCHI 1983] with some modifications. The temperature

T used varied from 1.0 to approximately 0.0. It is directly

related to the probability of keeping a state that reduces the

fitness. Also, the maximum distance travelled by the

parameter set at each step decreases with temperature,

following these formulas:

d = r dmax

dmax = k (T + 1)

where dmax is the maximum distance travelled, r is a random

number between -1 and 1, and k is an empirically determined

constant. This formula means that when T = 1, dmax is twice

as big as when T = 0. The actual change in parameters, d, is

a random value between -dmax and dmax . The parameters that

are changed are amplitudes and phases of sine waves, in the

case of the spider, and weights and biases of the neural

network in the other cases. More than one parameter can be

changed in each iteration. I've set the number of changing

parameters to 4, in order to avoid always having movements

in high-dimensional space that are parallel to one of the axis.

The other annealing parameters such as the final temperature

at which the procedure ends and the rate of decrease in

temperature varied from experiment to experiment, but I

found I had good results in general with values around 0.001

for final temperature and 0.9998 for rate of change.

6. Spider

As a first step, a spider model was created and used. The

spider model has one main body and eight legs. The legs are

articulated with the main body with universal joints, which

gives them two rotational degrees of freedom: one around

the horizontal axis to allow the leg to move up and down,

and one around the vertical axis to allow the leg to move

back and forward. This gives each leg enough flexibility to

be capable of propelling the spider forward. The two

segments of each leg are not articulated among themselves.

In order to control the spider, I chose to actuate the joints

with torques, which simulates the action of muscles in the

body of the animal. Later on, I switched the system to use

PD controllers, as discussed below.

It seemed adequate to provide the spider with a pattern

generator similar to those described in [GRZESZCZUK AND

TERZOPOULOS 1995]. Specifically, a frequency-domain

controller was used due to the fact that it favors periodicity,

making the transitions smooth between cycles. In the work

mentioned above, the authors concluded that frequency

domain controllers were more difficult to anneal than time

domain controllers, due to the irregularity of the topography

of the objective function in high dimensional space. Here, I

chose to experiment with a frequency domain controller

despite its longer convergence time, mainly because of the

advantage of using a representation that is natively

periodical, eliminating the step of performing a Fast Fourier

Transform to move from time to frequency domain.

Many attempts were made to control the spider, as well as

the snowboarder, using simple torques at the joints. These

attempts did not work. My initial hope was that torques

coming directly from the frequency domain controllers

would be sufficient to control the spider joints. This hope is

more understandable in the case of the snowboarder, in

which I wanted the neural network to directly control

torques, hoping that a “PD controller” would emerge from

the neural network. This was not achieved in either of these

cases.

Figure 2: Spider

My conclusion is that I ran into the curse of dimensionality

of neural networks, described by [GRZESZCZUK, TERZOPOULOS

AND HINTON 1998]. Many more neurons and hidden layers

would be needed to make that kind of controller emerge.

With that, I decided to take a more practical approach: to use

PD controllers on the joints. I argue that it doesn't break the

cleanliness and beauty of the system (contrary to what I

believed before), because we can think of PD controllers as

parts of our brains that are modeled separately. The analogy

is as follows: the cortex sends a signal to a “PD controller”

area of the brain saying that I want to position my joint wth a

certain target angle. The PD controller takes care of the

details, specifically what signals to send to the muscles, or

what torques to send to the joints. From a high level

perspective, the control signals are target angles, and that's

what I modeled as outputs from my neural network and

frequency-domain controller.

After a long annealing of over 16000 iterations, the spider

learned a believable locomotion cycle and was able to move

forward. The results can be seen in the accompanying video.

Although it is not identical to a real spider, the resulting leg

movement was quite interesting: upon close inspection, one

notices that at each leg, vertical and horizontal movements

are synchronized in such a way that it touches the ground

and propels the animal forward. Figure 3 shows a plot of

iteration versus objective function.

7. Snowboarder

The snowboarder model that was built in Blender is shown

on Figure 4. On the run-time system, anisotropic friction was

used between the board and the ground. The friction is less

pronounced in the direction along the length of the board

than in the direction across the board. This makes the board

tend to move in the forward-back direction, rather than

sideways, which mimics reality. A neural network was used

to control the hip (two degrees of freedom), the knees (one

degree of freedom each) and the feet (also one degree of

freedom each). The inputs to the neural network are the

projections of the head and the hip on the direction across

the board, to indicate if the character tends to fall to the right

or left.

Using PD controllers made the character surprisingly stable

if there are no obstacles, even without any actuation on the

joints. The character could slide downhill without falling.

This was not very interesting for my purposes. In order to

make the problem more interesting, I introduced bumps

along the path, which were modeled as underground spheres

that protrude over the surface of the ground. Tests were

made with the “mesh” object in ODE, but the ODE

Fitness (distance travelled in meters)

Red: saved parameters
Blue: current attempt

Iteration

Temperature

Figure 3: Spider annealing plot: fitness and temperature vs. iteration

Iteration

implementation of mesh collisions turned out to cause

occasional huge forces which led to crashes. I assumed it

was because of the way the board interacted with each

triangle of the mesh, sometimes completely penetrating it.

The “box and spheres” approach worked well without

crashes.

I did not get good results with the snowboarder model. It

turns out that this configuration, with the legs attached to the

board, is very difficult to control properly. My intention was

that the snowboarder would move the board using his leg

joints in order to change his direction and maintain balance.

However, it is not easy to change the direction of the board

this way. In order to reposition the board, snowboarders

perform a slight jumping movement which is time-

dependent and doesn't emerge as a function of the angle of

the body. The snowboarder did achieve some level of control

by rotating his hip and leaning forward and back, and he

balanced himself this way in some parts of the terrain but not

in others. It is also possible that the neural network was

overfitted for the training conditions.

8. Cyclist

The cyclist was modeled as shown in Figure 5. In terms of

degrees of freedom, the model is similar to the one used by

[HODGINS ET AL. 1995], except that the crank is not modeled.

The cyclist glides down an inclined path, using his potential

energy to achieve movement. The cyclist's legs were not

modeled either. The handlebar is attached to the fork with a

rigid joint. The fork is attached to the main bicycle body and

is able to rotate around its own axis. Therefore, rotating the

handlebar causes the fork to rotate. Finally, the front wheel

is attached to the fork and rotates with it on a steering

movement. The cyclist's body attaches to the bicycle body

through a rigid joint.

The arm and hand joints are the most important parts of the

system. The shoulder joints are ball-and-socket joints with

three degrees of freedom. The elbow joints have one

rotational degree of freedom and are the only actuated joints

in this model. The hand joints have two degrees of freedom.

Since I wanted to try to use only the elbow joints for control,

it was critical to experiment with these types of joints to

achieve the correct controlability. If the hands had one more

degree of freedom, essentially becoming ball joints, the arms

would be able to rotate and bend down unnaturally. If, on the

other hand, one degree of freedom was removed, either on

the shoulders or on the hands, the character was no longer

able to turn the handlebar.

The cyclist's neural network consisted of two inputs, which

are the angle the character makes with the vertical projected

on the bicycle's lateral direction, and the speed of the

characters. The outputs are the two desired angles for the

elbow joints. Although only one would be necessary, I used

two in order to make the correct opposing control emerge

from the neural network. One hidden layer with four neurons

was used.

Once the correct set of joints was defined, the cyclist went

through his annealing process. The results were very

positive, as can be seen on the accompanying video. After

learning, the cyclist can ride for a good distance on almost

any terrain without falling, as long as there is some initial

velocity to provide the possibility of control, and as long as

the direction is somewhat oriented towards the descending

slope to continuously provide kinetic energy.

9. Results

A video demonstrates the results for all three characters.

The cyclist is demonstrated first, then the snowboarder and

Figure 4: Snowboarder

Figure 5: Cyclist

the spider. It can be downloaded from:

http://www.cs.ucla.edu/~epoyart/annealing/.

The spider learned to walk, although the leg movements

don't seem very natural when examined closely. It is possible

that a global maximum was not achieved with this character.

Its locomotion speed is also very slow. However, it is still

interesting that the spider's frequency-domain controller was

able to achieve movement in some way.

The snowboarder learned to glide short distances without

falling. Although I think the snowboarder results were

unsatisfactory, it did develop a certain level of control with

the twisting of the hips, which makes it more stable than if

this control was not present.

The cyclist glides long distances without falling. This

character was the one that achieved the best results. The

results can be tested using the interactive system. By

slanting the cyclist to the left or to the right using the mouse,

one can observe the resulting arm movements that control

the handlebar and steer the bike. One can use the mouse to

set the cyclist upright anywhere on the terrain roughly facing

the right side, and give it a slight initial velocity. When that

is done, it is almost certain that the cyclist will maintain

balance and glide down the terrain.

10. Conclusions and Future Work

I implemented a system that allows articulated models to

learn to locomote. This system has a modeling pipeline,

consisting of an exporter that can be used in Blender, and a

modular run-time component, allowing it to be data-driven

in terms of the model used. The run-time system performs

simulated annealing either on a frequency domain controller

or on a neural network. It is successful in making models

learn to locomote. Positive results were obtained for the

spider and the cyclist, especially the latter. When in play-

back mode, the run-time system is interactive, allowing the

user to reposition the model to test its effectiveness under

different starting conditions. When in annealing mode, the

visual annealing feature allows the experimenter to have

some level of insight on the process. By observing the first

few hundreds of iterations (which usually doesn't take more

than a few minutes), he/she can abort the process and change

the parameters if it doesn't seem to be converging to good

results.

Future work can be done in the modeling pipeline and the

Blender exporter. The Model class need to be cleaned up and

made more modular, since I added some functionality that

doesn't belong there. This functionality, which is specific for

the models used in this project, would be a better fit for the

Simulator class.

More work can also be done in trying to develop a more

controllable snowboarder model. The modeling system and

its support for easy changes and experimentation will help

that. The snowboarder model is too rigid on the legs, feet

and board area, and better joint arrangements can be devised.

This is more critical in the case of the snowboarder than the

cyclist, since all of the snowboarder's weight is supported by

his legs.

Finally, experiments need to be done with parallel simulated

annealing, which can greatly improve simulated annealing

performance in multicore machines.

References

BARAFF, D. 1997. Physically Based Modeling: Principles

and Practice. SIGGRAPH Online Course Notes.

BLENDER. Open source 3D content creation suite.

http://www.blender.org/

GRZESZCZUK, R.; TERZOPOULOS, D. 1995. Automated Learning

of Muscle-Actuated Locomotion Through Control

Abstraction. Computer Graphics Proceedings, Annual

Conference Series, ACM SIGGRAPH, pp. 63–70.

GRZESZCZUK, R.; TERZOPOULOS, D.; HINTON, G. 1998.

NeuroAnimator: Fast Neural Network Emulation and

Control of Physics-Based Models. Computer Graphics

Proceedings, Annual Conference Series, 1998, ACM

SIGGRAPH, pp. 9–20.

HODGINS, J. K.; WOOTEN, W. L.; BROGAN, D. C.; O’BRIEN, J. F.

1995. Animating Human Athletics. Proceedings of the

22nd annual conference on Computer Graphics and

Interactive Techniques, pp. 71-78.

KIRKPATRICK, S.; GELATT, C. D.; VECCHI, M. P. 1983.

Optimization by Simulated Annealing. Science, New

Series, Vol. 220, No. 4598, pp. 671-680.

ODE – OPEN DYNAMICS ENGINE. http://www.ode.org/

POYART, E. 2010. Interactive Articulated Rover on Mars.

http://www.cs.ucla.edu/~epoyart/rover/

TERZOPOULOS, D.; TU, X.; GRZESZCZUK, R. 1994. Artificial

fishes: Autonomous locomotion, perception, behavior,

and learning in a simulated physical world. Artificial

Life, 1(4):327–351.

WEB 3D CONSORTIUM. Open Standards for Real-Time 3D

Communication. http://www.web3d.org/x3d/

http://www.cs.ucla.edu/~epoyart/annealing/
http://www.cs.ucla.edu/~epoyart/rover/
http://www.ode.org/
http://www.blender.org/

