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Abstract

In  this  work,  low  level  control  of  three  different  virtual 

characters  is  achieved  using  simulated  annealing  to  make 

these  characters  perform  locomotion.  Aspects  that  were 

studied  include  joint  positioning  and  their  characteristics 

(including  degrees  of  freedom),  control  scheme,  neural 

network inputs and outputs and annealing schedule. A visual 

annealing  approach  optionally  allows  the  experimenter  to 

observe  the  annealing  process  animated  as  it  happens.  A 

modeling pipeline based on Blender provides a sofisticated 

way  to  model  characters,  and  the  character  loading  and 

assembly  in  the  runtime  is  data-driven.  Three  characters 

were created and used: a spider, a snowboarder and a cyclist.  

Good results were obtained with the spider and the cyclist; 

they successfully learned to locomote on the virtual terrain.

1. Introduction

Animating  virtual  characters  using  dynamic  control  under 

physics  is  a  very  attractive  possibility.  It  allows  those 

characters  to  respond  better  to  unforeseen  events  on  the 

environment, as compared to predefined, fixed animations. 

Even  more  interesting  is  teaching  those  characters  using 

learning approaches such as simulated annealing or genetic 

algorithms.

In this work, I employ simulated annealing to teach virtual 

characters to locomote on the environment. Joint control is 

done  either  by  frequency-domain  controllers  or  neural 

networks  in  different  characters.  The characters  that  were 

created  and  used  for  this  project  were  a  spider,  a 

snowboarder and a cyclist. Rather than making the annealing 

process  completely  opaque,  I  used  a  visual  annealing 

approach.  Visual  annealing  refers  to  the  fact  that  the 

animation  can  be  seen  in  real-time  during  the  annealing 

process, if that is desired. This can provide important clues 

as to how the character is behaving during its learning.

Related  work  is  presented  in  section  2.  In  section  3, 

Locomotion, I  classify the characters with respect  to their 

locomotion characteristics. In section 4, Simulation System, 

I show the main aspects of the simulation system that was 

developed for  this project,  as  well  as  its  two open-source 

components: the physics simulation library Open Dynamics 

Engine and the modeling software Blender.  The annealing 

schedule is described in section 5. In sections 6, 7, and 8, the 

three virtual characters are described in detail. Results are 

discussed in section 9, and section 10 is the conclusion.

2. Related Work

The main inspiration for this work came from [GRZESZCZUK 

AND TERZOPOULOS 1995], in which sharks and other animals 

are modeled using mass-spring systems and learn to swim 

through  simulated  annealing.  The  method  of  simulated 

annealing,  described  in  detail  in  [KIRKPATRICK,  GELATT AND 

VECCHI 1983], is a global optimization method that is capable 

of  finding  parameters  in  a  high  dimensional  space  that 

optimize  an  objective  function.  It  was  used  here  to  find 

motor controller parameters for all three virtual characters. 

In  [GRZESZCZUK,  TERZOPOULOS AND HINTON 1998],  a  neural 

network  is  used  for  animation  control  of  physics-based 

models.  The basic ideas of  each of  those three works  are 

combined  here.  In  [HODGINS ET AL.  1995],  many  human 

characters  perform  different  types  of  athletics,  including 

bicycle riding. In that work the actuation parameters were 

manually set up.



3. Locomotion

Virtual  characters  can  be  classified  according  to  their 

stability. The spider is a stable character: it does not fall or 

flip  over  when  left  alone  in  the  simulated  world.  The 

snowboarder  and  cyclist  are  unstable:  they  need  active 

control  in  order  to  stay  upright.  Another  classification 

scheme,  which  is  orthogonal  to  this  one,  is  related  to 

whether the character locomotes with cyclical control. The 

spider  needs  to  move  its  legs  in  a  certain  cyclic  way.  A 

snowboarder does not need cyclic motion if we think of him 

as just sliding down a track; what he needs to do is maintain 

balance and respond to eventual  bumps on the ground.  A 

cyclist is a hybrid case: he needs both to cycle his legs and 

maintain balance. However, the model implemented in this 

work  glides  down an inclined path.  He uses  his  potential 

energy and does not need to move his legs, and is therefore 

analogous to  the snowboarder  whose main objective  is  to 

maintain balance and glide down as far as possible.

In  view  of  this,  the  characters  can  be  divided  into  two 

groups. The spider is a character that needs to move its legs 

and  doesn't  need  any  sensory  input.  For  this  case,  a 

frequency domain controller was used. The snowboarder and 

the cyclist, on the other hand, are characters that don't need 

cyclic  motion  but  need  sensory  input  in  order  to  keep 

balance. To achieve sensory control, a neural network was 

used for the snowboarder and the cyclist instead of a cyclical 

motion generator.

4. Simulation system

A custom learning and simulation system was written, using 

the  Open  Dynamics  Engine  [ODE],  an  open-source 

software, as a physics simulation provider. ODE implements 

a variation on the integration scheme described by  [BARAFF 

1997]. A modular diagram of the system is shown in Figure 

1.  Modeling  is  done  in  Blender,  an  open-source  3D 

modeling tool [BLENDER]. A custom Blender exporter, written 

in  Python,  makes  the  model  available  to  be  used  by  the 

system. The modeling process is explained in detail below. 

Depending on the model used, either a Frequency Domain 

Controller  or  a  Neural  Network  is  active  controlling  the 

model. During the annealing phase,  the Annealing module 

drives  the  simulation  and  controls  the  FDC  and  NN 

parameters.  During  annealing,  the  renderer  can  be  either 

activated  (visual  annealing)  or  deactivated.  When 

deactivated,  the  system  can  be  compiled  on  a  fast  non-

graphical machine such as a multi-core server (although no 

multithreading was implemented so far). In the experiments 

performed at UCLA, the machine lion.cs.ucla.edu was used 

for non-visual annealing.

Once annealing is done, the system can be set up to “play 

back”  the  model  using  the  neural  network  or  frequency-

domain controller that was obtained. During this play back 

phase, which is in real time, the user can interact with the 

model by dragging it around with the mouse. This feature 

proved very useful even before the annealing for the purpose 

of  testing  the  various  stiffness,  damping  and  friction 

parameters in the model and the world. After annealing, this 

feature was used to prove that the model could locomote in 

different directions and through different areas of the terrain 

(with diverse obstacles).  This indicated that the controllers 

were not overfit.

Modeling was done using the open-source software Blender. 

This software has an export plug-in system which consists of 

Python  plugins  that  access  the  Blender  API.  There  is  an 

existing plug-in that exports to the X3D format, a standard 

for 3D scene description [WEB 3D CONSORTIUM]. I customized 

this X3D exporter to include information about joints and 

limits. To represent a joint, a small box object can be used. 

Its center represents the position of the joints, and its axes 

are aligned with the rotation axis of the joints. More detail 

can be seen in [POYART 2010], another project developed in 

parallel with this one. In that work, an articulated Mars rover 

was modeled and exported using the same system.

The modeling process is as follows. Models are created in 

Blender  using  boxes,  cylinders  and  spheres.  Joints  are 

created with parameters that indicate the name of the objects 

they  attach  to,  and  with  position  and  orientation  set 
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Figure 1: System components. Arrows represent information flow. 
FDC is the Frequency Domain Controller. NN is the Neural 
Network.
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according to the desired rotational axis. The model is then 

exported using the customized X3D exporter. A C++ class, 

Model, is the run-time representation of the model. It has the 

ability to read X3D files, initialize the model in ODE, render 

it, and expose its characteristics to other parts of the system.

This  modeling  pipeline  was  extremely  useful  for  quickly 

creating models and experimenting with them. It makes the 

system data-driven, reducing the need to change source code 

when using different models. Its usefulness was proven in 

the Mars rover project mentioned above. Other researchers 

at UCLA's MAGIX lab have also expressed interest in using 

it. I intend to continue developing it and publish it as open-

source.

5. Annealing

The annealing algorithm was based on [KIRKPATRICK, GELATT 

AND VECCHI 1983] with some modifications. The temperature 

T used varied from 1.0 to approximately 0.0. It is directly 

related to the probability of keeping a state that reduces the 

fitness.  Also,  the  maximum  distance  travelled  by  the 

parameter  set  at  each  step  decreases  with  temperature, 

following these formulas:

d = r dmax

dmax = k (T + 1)

where dmax is the maximum distance travelled, r is a random 

number between -1 and 1, and k is an empirically determined 

constant. This formula means that when T = 1, dmax is twice 

as big as when T = 0. The actual change in parameters, d, is 

a random value between -dmax and dmax . The parameters that 

are changed are amplitudes and phases of sine waves, in the 

case  of  the  spider,  and  weights  and  biases  of  the  neural 

network in the other cases. More than one parameter can be 

changed in each iteration. I've set the number of changing 

parameters to 4, in order to avoid always having movements 

in high-dimensional space that are parallel to one of the axis.

The other annealing parameters such as the final temperature 

at  which  the  procedure  ends  and  the  rate  of  decrease  in 

temperature  varied  from  experiment  to  experiment,  but  I 

found I had good results in general with values around 0.001 

for final temperature and 0.9998 for rate of change. 

6. Spider

As a first step, a spider model was created and used. The 

spider model has one main body and eight legs. The legs are 

articulated with the main body with universal joints, which 

gives them two rotational  degrees of freedom: one around 

the horizontal axis to allow the leg to move up and down, 

and one around the vertical axis to allow the leg to move 

back and forward. This gives each leg enough flexibility to 

be  capable  of  propelling  the  spider  forward.  The  two 

segments of each leg are not articulated among themselves. 

In order to control the spider, I chose to actuate the joints 

with torques, which simulates the action of muscles in the 

body of the animal. Later on, I switched the system to use 

PD controllers, as discussed below.

It  seemed  adequate  to  provide  the  spider  with  a  pattern 

generator  similar  to  those  described  in  [GRZESZCZUK AND 

TERZOPOULOS 1995].  Specifically,  a  frequency-domain 

controller was used due to the fact that it favors periodicity, 

making the transitions smooth between cycles. In the work 

mentioned  above,  the  authors  concluded  that  frequency 

domain controllers were more difficult to anneal than time 

domain controllers, due to the irregularity of the topography 

of the objective function in high dimensional space. Here, I 

chose  to  experiment  with  a  frequency  domain  controller 

despite its longer convergence time, mainly because of the 

advantage  of  using  a  representation  that  is  natively 

periodical, eliminating the step of performing a Fast Fourier 

Transform to move from time to frequency domain.

Many attempts were made to control the spider, as well as 

the snowboarder, using simple torques at the joints. These 

attempts  did  not  work.  My initial  hope  was  that  torques 

coming  directly  from  the  frequency  domain  controllers 

would be sufficient to control the spider joints. This hope is 

more  understandable  in  the  case  of  the  snowboarder,  in 

which  I  wanted  the  neural  network  to  directly  control 

torques, hoping that a “PD controller” would emerge from 

the neural network. This was not achieved in either of these 

cases.

Figure 2: Spider



My conclusion is that I ran into the curse of dimensionality 

of neural networks, described by [GRZESZCZUK, TERZOPOULOS 

AND HINTON 1998].  Many more  neurons and hidden  layers 

would be  needed to  make that  kind of  controller  emerge. 

With that, I decided to take a more practical approach: to use 

PD controllers on the joints. I argue that it doesn't break the 

cleanliness  and  beauty  of  the  system (contrary  to  what  I 

believed before), because we can think of PD controllers as 

parts of our brains that are modeled separately. The analogy 

is as follows: the cortex sends a signal to a “PD controller” 

area of the brain saying that I want to position my joint wth a 

certain  target  angle.  The  PD  controller  takes  care  of  the 

details, specifically what signals to send to the muscles, or 

what  torques  to  send  to  the  joints.  From  a  high  level 

perspective, the control signals are target angles, and that's 

what  I  modeled  as  outputs  from my neural  network  and 

frequency-domain controller.

After a long annealing of over 16000 iterations, the spider 

learned a believable locomotion cycle and was able to move 

forward. The results can be seen in the accompanying video. 

Although it is not identical to a real spider, the resulting leg 

movement was quite interesting: upon close inspection, one 

notices that at each leg, vertical and horizontal movements 

are synchronized in such a way that it touches the ground 

and propels  the animal forward.  Figure 3 shows a plot of 

iteration versus objective function.

7. Snowboarder

The snowboarder model that was built in Blender is shown 

on Figure 4. On the run-time system, anisotropic friction was 

used between the board and the ground. The friction is less 

pronounced in the direction along the length of the board 

than in the direction across the board. This makes the board 

tend  to  move  in  the  forward-back  direction,  rather  than 

sideways, which mimics reality. A neural network was used 

to control the hip (two degrees of freedom), the knees (one 

degree of  freedom each) and the feet  (also one  degree of 

freedom each).  The  inputs  to  the  neural  network  are  the 

projections of the head and the hip on the direction across 

the board, to indicate if the character tends to fall to the right 

or left.

Using PD controllers made the character surprisingly stable 

if there are no obstacles, even without any actuation on the 

joints.  The character  could  slide  downhill  without  falling. 

This was not very interesting for my purposes. In order to 

make  the  problem  more  interesting,  I  introduced  bumps 

along the path, which were modeled as underground spheres 

that  protrude  over  the  surface  of  the  ground.  Tests  were 

made  with  the  “mesh”  object  in  ODE,  but  the  ODE 

Fitness (distance travelled in meters)
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Figure 3: Spider annealing plot: fitness and temperature vs. iteration
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implementation  of  mesh  collisions  turned  out  to  cause 

occasional huge forces which led to crashes.  I  assumed it 

was  because  of  the  way  the  board  interacted  with  each 

triangle of  the mesh, sometimes completely penetrating it. 

The  “box  and  spheres”  approach  worked  well  without 

crashes.

I did not get good results with the snowboarder model.  It  

turns out that this configuration, with the legs attached to the 

board, is very difficult to control properly. My intention was 

that the snowboarder would move the board using his leg 

joints in order to change his direction and maintain balance. 

However, it is not easy to change the direction of the board 

this  way.  In  order  to  reposition  the  board,  snowboarders 

perform  a  slight  jumping  movement  which  is  time-

dependent and doesn't emerge as a function of the angle of 

the body. The snowboarder did achieve some level of control 

by rotating his hip and leaning forward and back,  and he 

balanced himself this way in some parts of the terrain but not 

in  others.  It  is  also  possible  that  the  neural  network  was 

overfitted for the training conditions.

8. Cyclist

The cyclist was modeled as shown in Figure 5. In terms of 

degrees of freedom, the model is similar to the one used by 

[HODGINS ET AL. 1995], except that the crank is not modeled. 

The cyclist glides down an inclined path, using his potential 

energy  to  achieve  movement.  The  cyclist's  legs  were  not 

modeled either. The handlebar is attached to the fork with a 

rigid joint. The fork is attached to the main bicycle body and 

is able to rotate around its own axis. Therefore, rotating the 

handlebar causes the fork to rotate. Finally, the front wheel 

is  attached  to  the  fork  and  rotates  with  it  on  a  steering 

movement. The cyclist's body attaches to the bicycle body 

through a rigid joint. 

The arm and hand joints are the most important parts of the 

system. The shoulder joints are ball-and-socket joints with 

three  degrees  of  freedom.  The  elbow  joints  have  one 

rotational degree of freedom and are the only actuated joints 

in this model. The hand joints have two degrees of freedom. 

Since I wanted to try to use only the elbow joints for control, 

it  was critical  to  experiment  with these  types  of  joints  to 

achieve the correct controlability. If the hands had one more 

degree of freedom, essentially becoming ball joints, the arms 

would be able to rotate and bend down unnaturally. If, on the 

other hand, one degree of freedom was removed, either on 

the shoulders or on the hands, the character was no longer 

able to turn the handlebar.

The cyclist's neural network consisted of two inputs, which 

are the angle the character makes with the vertical projected 

on  the  bicycle's  lateral  direction,  and  the  speed  of  the 

characters.  The outputs are the two desired angles for the 

elbow joints. Although only one would be necessary, I used 

two in order to make the correct  opposing control  emerge 

from the neural network. One hidden layer with four neurons 

was used.

Once the correct set of joints was defined, the cyclist went 

through  his  annealing  process.  The  results  were  very 

positive, as can be seen on the accompanying video. After 

learning, the cyclist can ride for a good distance on almost 

any terrain without falling, as long as there is some initial 

velocity to provide the possibility of control, and as long as 

the direction is somewhat oriented towards the descending 

slope to continuously provide kinetic energy.

9. Results

A video  demonstrates  the  results  for  all  three  characters. 

The cyclist is demonstrated first, then the snowboarder and 

Figure 4: Snowboarder

Figure 5: Cyclist



the spider. It can be downloaded from:

http://www.cs.ucla.edu/~epoyart/annealing/.

The  spider  learned  to  walk,  although  the  leg  movements 

don't seem very natural when examined closely. It is possible 

that a global maximum was not achieved with this character. 

Its locomotion speed is also very slow. However, it  is still 

interesting that the spider's frequency-domain controller was 

able to achieve movement in some way.

The snowboarder  learned  to  glide  short  distances  without 

falling.  Although  I  think  the  snowboarder  results  were 

unsatisfactory, it did develop a certain level of control with 

the twisting of the hips, which makes it more stable than if 

this control was not present.

The  cyclist  glides  long  distances  without  falling.  This 

character  was  the  one  that  achieved  the  best  results.  The 

results  can  be  tested  using  the  interactive  system.  By 

slanting the cyclist to the left or to the right using the mouse, 

one can observe the resulting arm movements that control 

the handlebar and steer the bike. One can use the mouse to 

set the cyclist upright anywhere on the terrain roughly facing  

the right side, and give it a slight initial velocity. When that 

is  done,  it  is  almost  certain that  the cyclist  will  maintain 

balance and glide down the terrain.

10. Conclusions and Future Work

I  implemented  a  system that  allows  articulated  models  to 

learn  to  locomote.  This  system  has  a  modeling  pipeline, 

consisting of an exporter that can be used in Blender, and a 

modular run-time component, allowing it to be data-driven 

in terms of the model used. The run-time system performs 

simulated annealing either on a frequency domain controller 

or on a neural network. It is successful in making models 

learn  to  locomote.  Positive  results  were  obtained  for  the 

spider and the cyclist,  especially the latter.  When in play-

back mode, the run-time system is interactive, allowing the 

user to reposition the model to test its effectiveness under 

different starting conditions. When in annealing mode, the 

visual  annealing  feature  allows  the  experimenter  to  have 

some level of insight on the process. By observing the first 

few hundreds of iterations (which usually doesn't take more 

than a few minutes), he/she can abort the process and change 

the parameters if it doesn't seem to be converging to good 

results.

Future work can be done in the modeling pipeline and the 

Blender exporter. The Model class need to be cleaned up and 

made more modular, since I added some functionality that 

doesn't belong there. This functionality, which is specific for 

the models used in this project, would be a better fit for the 

Simulator class.

More work can also be done in trying to develop a more 

controllable snowboarder model. The modeling system and 

its support for easy changes and experimentation will help 

that. The snowboarder model is too rigid on the legs,  feet 

and board area, and better joint arrangements can be devised. 

This is more critical in the case of the snowboarder than the 

cyclist, since all of the snowboarder's weight is supported by 

his legs.

Finally, experiments need to be done with parallel simulated 

annealing, which can greatly improve simulated annealing 

performance in multicore machines.
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