
Simplified Wave Particles

Eduardo R. Poyart

Draft

Abstract

This work presents a simplified implementation of Wave

Particles, described by [Yuksel et al. 2007], which

produces good visual results and is very lightweight. For

many applications, some of the aspects that are simulated

in [Yuksel et al. 2007] can be left aside, while maintaining

a satisfactory visual result. I propose a simplification of the

technique by not modeling horizontal movement of the

water surface and not providing interaction with objects.

Further derivations of the original idea are proposed: a

ring-shaped texture that models a wavefront instead of

individual particles; and ripples in the surface of an ocean

can be approximated by linear wavefronts.

1. A review of Wave Particles

The technique of Wave Particles is a way to perform wave

simulation by means of a particle system. This is different

from classical approaches such as [Tessendorf 2001],

which is based on a frequency domain transform. In Wave

Particles, an object moving on the surface of the water

continually generates particles which move outwards

radially from the object's position. These particles are then

rendered on a pixel buffer, and this pixel buffer is used as a

height map whose heights are applied to the water surface

mesh.

Each particle essentially represents the effect of an

interaction between the object and the liquid. Each particle

has a value, which can be positive or negative When the

object is pushing the liquid away (for example, the front

part of a boat moving forward), the corresponding particles

have a positive value. When the object is leaving an empty

space to be filled by the liquid, as in the back side of a boat

moving forward, negative particles are generated.

For each particle, a bump shaped texture is rendered on the

pixel buffer, which will eventually become a height map.

Several particles close together will have their bumps

overlapping, and the net effect will be of a continuous

wavefront. If a positive and a negative particle overlaps,

their effects can be partially or totally cancelled.

The generated particles move radially from the point of

interaction at a constant speed. This poses a problem in

which, if the particles get too far apart, their images in the

pixel buffer will not overlap, rendering discrete bumps on

the water surface. To avoid that, the particles are replicated

according to a certain condition related to the distance

between them.

2. Simplified Wave Particles

The original technique relies both on the vertical and

horizontal components of the movement of the liquid

surface being simulated. In this work, only the vertical

component is simulated, in order to simplify the

implementation and speed up the computations.

The basic outline of the algorithm is as follows: At every

frame and for every object that moves on the surface of the

liquid, a wave front is generated. This wave front consists

initially of 4 particles, one for each cardinal direction in the

positive and negative sides. A data structure called

Wavefront stores a list of its particles, as well as a 2D

vector of movement of the object. Magnitude values are

assigned to the particles when they are created, and they

are derived from the movement vector. The magnitude is 1

if the particle's movement direction is parallel to the

object's movement direction, decreasing to 0 at a 90 degree

angle with the object's movement direction, and further

decreasing to -1 at a 180 degree angle. Each particle is

represented by a WaveParticle data structure, which

contains its position and direction of movement, as well as

its magnitude.

3. Split

The particles start moving radially outwards from their

point of origin. Whenever the distance between two

particles becomes sufficiently large, more particles have to

be generated. Let's call this operation “split”. If split is not

performed, the bumps generated by each one on the height

map will stop overlapping and the impression of continuity

will be destroyed. Instead of directly computing the

distance between particles, we can observe that this

distance increases of a fixed amount whenever the distance

from a particle to its point of creation is doubled.

Furthermore, if the particle speed is constant, the distance

from a particle to its point of creation is directly

proportional to the elapsed time since the creation of the

wavefront.

Therefore, a timer can be used in order to determine when

to split particles. The elapsed time since the creation of the

wavefront, te, is a real number and it's also stored at the

Wavefront structure. By passing the elapsed time since the

last frame to the Wavefront method that updates particles

for the current frame, we can easily accumulate times with

just an addition. Whenever this time reaches a

predetermined split time, ts, let's say the distance between

two neighboring particles is d. At this time, the split

operation is performed. New particles are positioned

between the original ones and the value of ts is doubled.

This way, when the next split operation happens, the

particles will again be at a distance d between each other.

When a split is performed, the new particles are generated

at the appropriate position: not only between the original

particles, but on top of the circle centered at the point of

creation and on top of which all the other particles reside.

Its magnitude is calculated according to the same rules as

the initial particles, using the object's original movement

vector.

4. Render to the height map

Once the particle's positions are updated and the particles

are split (if needed), the particles are then rendered to a

texture that will be used to compute a height map. In my

experimental code I used OpenGL as a graphics library.

OpenGL in its basic form can't perform subtraction

operations in the render target, so two render targets were

used: one for positive and one for negative values. A color

of zero on either one of the render targets represents a

magnitude of zero on the height map – a height that is

halfway between the maximum and minimum heights. A

color with maximum value on the positive render target

represents the maximum possible height, and a color with

maximum value on the negative render target represents

the minimum possible height. Particles with positive

magnitude are rendered to the positive render target, and

particles with negative magnitude are rendered on the

negative render target with their magnitude inverted.

A texture must be used to render each particle on the

render targets. This texture represents the bump caused by

the particle, and it will affect several pixels on the render

target. Experimental results pointed to a 16x16 pixels

texture with alpha, in which all pixels are white and are

modulated by the varying alpha value.

The alpha value effectively determines the shape of the

bump. The bump texture is pre-computed procedurally.

Also from experiments, it was determined that a good

shape for the bump is described by the equation:

i , j=e−k ∣D i , j∣
2

where α is the alpha value of a texel at (i, j), D is the

distance between the pixel at (i, j) and the center of the

texture, and k is an empirically-determined constant. This

will result on a shape which has the highest value at the

center, decaying exponentially while the distance to the

center increases. k has to be obtained so that the edges of

the texture have as small a value as possible, so that there

is no visual discontinuity when the particle is rendered.

If too many particles are rendered on top of each other, for

example by simulating a boat moving forward at the same

approximate speed as the particles, the first experiments

resulted on values that were too high, either saturating the

maximum height value, which produced a flat top on the

wave front, or if the scale of values was reduced, a very

high peak was observed right in front of the moving boat.

This was resolved by modulating the height map

magnitude by a function f(m), where m is the original

magnitude. This is done after all particles are rendered and

before the render target is converted to a height map. The

function used was:

f(m) = atan(c m) / c

where atan is the arc tangent and the variable c (for

“compression” factor) is a limiting factor that determined

how much will atan influence the result. For values of c

close to 0, f(m) will be approximately equal to m. For

higher values of c, f(m) will begin to have a compression at

the highest values of m. The appropriate value of c was

determined experimentally.

5. Conclusion

With careful selection of the exponential function that

shapes the bump texture and the limiting function applied

to the height map post-particle-render, a good visual result

was obtained without the need to model horizontal

movement of the liquid surface. A much simpler height

map was used: just an array of scalars that come directly

from the particle render targets. There was no need to

implement an extended height map as described by [Yuksel

et al. 2007].

Further work is planned to improve the algorithm:

● Ring-shaped texture

A ring-shaped texture can be used to render a whole

wavefront at once into the render target. In some

constrained cases, this can greatly reduce rendering

demand on the pixel buffer. If there is no need to model

reflections of waves, a ring-shaped texture can be directly

applied. If there are reflections but they only happen in an

enclosed convex surrounding, such as a rectangular pool or

another convex-shaped pool, a ring-shaped texture can also

be used. When a reflection happens, another ring-shaped

texture can be drawn, with a center outside the pool, in a

point which is the reflection of the original center with

relation to the reflective surface. This way, one wave front,

which begins as one ring-shaped texture, can end up being

rendered as multiple ring-shaped textures after reflections

happen.

● Linear-shaped texture

Likewise, in order to model waves of infinite origin, for

example, in the middle of the ocean, there is no need to use

several particles arranged in a linear fashion. One texture

with a linear bump shape can be used. A set of these, in

parallel and moving in a certain direction, can be combined

with other similar sets moving in different directions, and

the result is an approximation of the background

movement of water on the ocean, and a local Wave Particle

simulation of a boat, for example, can happen on top of it.

6. Bibliography

Yuksel et al. 2007. Wave Particles. In Proc. Of SIGGRAPH

'07.

Tessendorf, J. 2001. Simulating Ocean Water. In

Simulating Nature: Realistin and Interactive

Techniques. ACM SIGGRAPH '01 Course #47 Notes.

