
Interactive Articulated Rover on Mars

Eduardo Poyart – UCLA – March 2010

CS 274C – Computer Animation – Prof. Petros Faloutsos

Introduction

The purpose of this project was to implement an

interactive virtual environment of the surface of Mars in

which the user can drive and articulated rover. The

Martian terrain is derived from the MOLA (Mars Orbiter

Laser Altimeter) database available from NASA. The

rover is subject to physics laws, and performs collision

detection with the planetary surface. The ODE (Open

Dynamics Engine) library provides the physics simulation

and collision detection.

Mars

The MOLA database I used [NASA] was a heightmap of

the surface of Mars with 128 samples per degree of

longitude. This database is divided in 16 rectangular

areas, in a 4x4 grid, that cover the surface of the planet

from 88 degrees North to 88 degrees South. Only one of

these segments was used.

Because the resolution of 128 samples per degree

translates, close to the equator, to roughly one sample

every 450 meters, the terrain had to be turned into

something more detailed. A real-life-sized rover wouldn't

interact in an interesting way with a terrain with that

resolution, since it would be very small compared to the

area of each triangle.

The method I chose to increase the resolution of the

terrain was Fractional Brownian Motion. It consists of

recursively subdividing the terrain and applying a random

vertical displacement to all vertices at each step. Notice

that the vertices created on earlier subdivisions receive

more random displacements than those created on later

subdivisions. This has a net effect of creating a

distribution of frequencies in such a way that the

magnitudes of higher frequencies are smaller. It results in

a more realistically-looking terrain.

The technique of Simulated Erosion [Musgrave 1989] was

also studied as a step to be applied after the fractal

Brownian motion. It was not fully implemented due to

time constraints and due to the scope of the project being

on animation rather than terrain, but the system is

prepared for integration with that technique.

The world is rendered using a quadtree technique, in

which terrain closer to the viewer are rendered in higher

resolution. This allows interactive frame rates. The highest

resolution level is also texturized, to provide a ground rich

in features at close inspection and to help with the

perception of motion. I used a texture taken from an actual

photograph of Mars made by the Phoenix lander.

Since the total amount of terrain data is large, I used a

streaming mechanism that I had previously implemented.

This mechnism only loads in memory the sections of

terrain that are to be rendered, at their appropriate

resolution.

The Rover

In order to allow for flexibility in rover design and to help

future projects, I created an entire modeling tool chain. It

is based on the open-source software Blender [Blender],

which provides 3D modeling capabilities. Figure 1 shows

this tool chain.

Figure 1 – the tool chain

Blender has an exporter plug-in framework in which each

exporter is a Python program that accesses the Blender

API. One of the exporters it comes with is the X3D

exporter. The X3D format [Web 3D Consortium] is an

open specification that is the successor of VRML. I found

this format to be the best to use as a base, due to the fact

that it represent boxes and cylinders with constant vertex

coordinates in local space, and it stores the

transformations needed to position, scale and rotate them.

With X3D as a base, a few extra fields were introduced to

represent physics constraints, and the bodies that these

constraints relate to.

Blender has a built-in representation of constraints, but it

was not used because it didn't appear practical. More

specifically, from an user interface standpoint, it is

difficult to position Blender's built in constraints and to

define their axes. Instead, the following method was

devised: for each constraint, the user creates a “box”

objects and gives it a name that starts with the string

“Const”. These objects do not represent geometry in the

scene, but merely a constraint. They can be scaled to look

very small and positioned between two geometry bodies

in the scene. The position of the constraint object defines

the pivot point of the physical constraint. The rotation of

the constraint object defines the axes of the constraint: in

case of a Hinge constraint, the X axis is the actuation axis;

in case of a Hinge2 constraint (used in ODE for wheels),

the X and Y axes are used.

By setting Blender's user-defined properties for these

objects, the user can create key/value pairs that indicate

the pair of objects this constraint is related with, as well as

the constraint's limits. If the keys are the strings “Const1”

or “Const2”, the value represent the name of the first or

second body this constraint is linked to. If the keys are the

strings “Limit1” or “Limit2”, the value is used to set the

limits, in which case it should consist of two floats

separated by a comma. Figure 2 exemplifies a pair of

objects (the rover's main body and a wheel) and a

constraint between them.

In the simulator's C++ code, the model is represented by a

class called “Model”. This class is able to read the X3D

file and instantiate all of the needed ODE bodies and

constraints, as well as render the geometry of the model

using OpenGL. The Model class is the run-time end of the

modeling tool chain, and it talks directly with ODE.

Blender

Intermediate XML file
(X3D)

Custom X3D exporter

Model class
(Mars simulator)

ODE

Figure 2 – A constrain between the rover's main body and a

wheel. Notice the properties (box on the bottom) that define the

parameters.

With this flexible system, many kinds of models and

constraints can be easily created in Blender and exported

to be used in C++ code under ODE. The primitives

implemented were boxes and cylinders. Other primitives

can be added in the future. The Model class also takes

care of generating collision geometry for use with ODE's

collision system. Currently each geometric primitive of

the model corresponds to a rigid body and a collision

primitive, but this can be changed in the future. In

particular, separating rendering geometry from rigid

bodies and collisions allow for rigid geometry of arbitrary

shapes to be created without the use of an inflexible

constraint between pairs of bodies, which is currently

necessary but computationally expensive.

A six-wheeled rover was modeled. Its two front wheels

are traction wheels. They also steer left and right. All of

the rover's movement arise from its physical interaction

with the terrain. The rover's position and orientation do

not respond directly to user input, only indirectly. It

achieves movement through the wheels' rotational speed,

steering angle and friction with the terrain.

Steering was implemented by a PD controller on each of

the traction wheels. This controller sets a desired angle for

the wheel and applies rotational velocity relative to the

steering axis so that it reaches that angle. Acceleration

was implemented by directly applying angular velocity

relative to the main rotation axis to the weel.

The Simulation

ODE, the Open Dynamics Library [ODE], is the library I

used for physics simulation and collision detection.

Internally, its constraint solver follows the techniques

described in [Baraff 1995]. Differently from the ODE

demos, in this project I implemented separation between

step and draw functionalities, which is a better design.

However, the time step was limited to a maximum of

1/30s, to help with the stability of the physics library,

which can provide inaccurate and unstable results if large

time steps are used.

The world's mesh is provided to ODE in form of a

TriMesh object. Only the higher resolution meshes receive

a TriMesh representation, since the rover will never be

colliding with low-resolution terrain.

Many simulation parameters had to be fine-tuned. Friction

between the wheels and the ground and the spring and

damping constants for the wheel suspension were

particularly tricky. The wheel suspension is parametrized

in terms of ODE's Error Reduction Parameter and

Constraint Force Mixing, which re related to ks and kd. My

objective is for the user to drive the rover over almost any

terrain in a pleasant way and without flipping over too

much, provided that the speed isn't excessive. At the same

time, the experience should not be too dull and slow.

A third-person camera was implemented. The positioning

was done as follows: the camera is positioned at a

constant negative translation along the forward axis of the

rover's main body, and then it is translated up along the

world's vertical axis. The camera orientation is such that it

points to a fixed point above the rover (i.e. the center of

the rover translated up on the world's vertical axis).

The user interaction with the simulator is very simple. The

W/S/A/D keys are used for steering (these keys are

commonly used in first-person shooter games). W

accelerates, S decelerates, A turns left and D turns right.

The 0 key decelerates the traction wheels to zero velocity

instantly.

Results

The end result was, in my opinion, quite attractive and

interesting. It does invite the user to explore the world and

to learn the physical characteristics and limits of the rover.

The system runs at 30 frames per second on a 2.5GHz

Intel Core 2 Duo and a Nvidia GeForce 8600M GT GPU.

A few bits of emergent behavior were oberved. Due to the

camera positioning, which somewhat follows the rover's

actions, the whole scenery moves and shakes on screen as

the rover moves, especially at high speeds. Also, when the

rover is moving and the user “brakes” it (“0” key, which

sets the traction wheel's angular velocities to 0), the

resulting angular motion of the rover's main body

becomes an angular motion of the camera, making the

view “dip down” for a second, exactly as if you were

inside a car in a sudden stop. The opposite happens if you

suddenly accelerate the rover.

The fact that braking was done by setting the wheels'

angular velocities to 0 had other interesting results. One

can drive at high speeds and suddenly hit the brakes, and

watch the rover slide. There is even a risk of flipping over

when this is done.

Future work

There are many topics to explore, for which a planetary

simulator with physically-based interaction is an

important tool: how to efficiently render an entire planet

in real time, how to generate detail, what would be the

result of simulated erosion on the generated detailed

surface, how to perform on-line simulated erosion in order

to reduce the amount of data that has to be pre-processed,

how to use such a system as a scenario for crowd

simulations, or what other kinds of physically-based

interaction users can have with it.

References

BARAFF, D. 1997. Physically Based Modeling: Principles

and Practice. SIGGRAPH Online Course Notes.

MUSGRAVE, F. K., KOLB, C. E., MACE, R. S. 1989. The

Synthesis and Rendering of Eroded Fractal Terrains.

SIGGRAPH.

NASA PDS GEOSCIENCES NODE – Washington University in

St. Louis. http://pds-geosciences.wustl.edu/

missions/mgs/mola.html

ODE – OPEN DYNAMICS ENGINE. http://www.ode.org/

WEB 3D CONSORTIUM: Open Standards for Real-Time 3D

Communication. http://www.web3d.org/x3d/

http://www.ode.org/
http://pds-geosciences.wustl.edu/missions/mgs/mola.html
http://pds-geosciences.wustl.edu/
http://www.web3d.org/x3d/

