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Introduction

The  purpose  of  this  project  was  to  implement  an 

interactive virtual environment of the surface of Mars in 

which  the  user  can  drive  and  articulated  rover.  The 

Martian terrain is derived from the MOLA (Mars Orbiter 

Laser  Altimeter)  database  available  from  NASA.  The 

rover  is  subject  to physics  laws, and performs collision 

detection  with  the  planetary  surface.  The  ODE  (Open 

Dynamics Engine) library provides the physics simulation 

and collision detection.

Mars

The MOLA database I used [NASA] was a heightmap of 

the  surface  of  Mars  with  128  samples  per  degree  of 

longitude.   This  database  is  divided  in  16  rectangular 

areas, in a 4x4 grid, that cover the surface of the planet 

from 88 degrees North to 88 degrees South. Only one of 

these segments was used.

Because  the  resolution  of  128  samples  per  degree 

translates,  close  to  the  equator,  to  roughly  one  sample 

every  450  meters,  the  terrain  had  to  be  turned  into 

something more detailed. A real-life-sized rover wouldn't 

interact  in  an  interesting  way  with  a  terrain  with  that 

resolution, since it would be very small compared to the 

area of each triangle.

The  method  I  chose  to  increase  the  resolution  of  the 

terrain  was  Fractional  Brownian  Motion.  It  consists  of 

recursively subdividing the terrain and applying a random 

vertical displacement to all vertices at each step. Notice 

that  the  vertices  created  on  earlier  subdivisions  receive 

more  random displacements  than  those  created on  later 

subdivisions.  This  has  a  net  effect  of  creating  a 

distribution  of  frequencies  in  such  a  way  that  the 

magnitudes of higher frequencies are smaller. It results in 

a more realistically-looking terrain.

The technique of Simulated Erosion [Musgrave 1989] was 

also  studied  as  a  step  to  be  applied  after  the  fractal 

Brownian  motion.  It  was not  fully  implemented due  to 

time constraints and due to the scope of the project being 

on  animation  rather  than  terrain,  but  the  system  is 

prepared for integration with that technique.

The  world  is  rendered  using  a  quadtree  technique,  in 

which terrain closer to the viewer are rendered in higher 

resolution. This allows interactive frame rates. The highest 

resolution level is also texturized, to provide a ground rich 

in  features  at  close  inspection  and  to  help  with  the 



perception of motion. I used a texture taken from an actual  

photograph of Mars made by the Phoenix lander.

Since the total amount of terrain data is  large,  I  used a 

streaming mechanism that I had previously implemented. 

This  mechnism  only  loads  in  memory  the  sections  of 

terrain  that  are  to  be  rendered,  at  their  appropriate 

resolution.

The Rover

In order to allow for flexibility in rover design and to help 

future projects, I created an entire modeling tool chain. It 

is based on the open-source software Blender [Blender], 

which provides 3D modeling capabilities. Figure 1 shows 

this tool chain.

Figure 1 – the tool chain

Blender has an exporter plug-in framework in which each 

exporter  is  a  Python program that  accesses  the Blender 

API.  One  of  the  exporters  it  comes  with  is  the  X3D 

exporter.  The X3D format  [Web 3D Consortium]  is  an 

open specification that is the successor of VRML. I found 

this format to be the best to use as a base, due to the fact  

that it represent boxes and cylinders with constant vertex 

coordinates  in  local  space,  and  it  stores  the 

transformations needed to position, scale and rotate them. 

With X3D as a base, a few extra fields were introduced to 

represent  physics  constraints,  and  the  bodies  that  these 

constraints relate to. 

Blender has a built-in representation of constraints, but it 

was  not  used  because  it  didn't  appear  practical.  More 

specifically,  from  an  user  interface  standpoint,  it  is 

difficult to position Blender's  built in constraints and to 

define  their  axes.  Instead,  the  following  method  was 

devised:  for  each  constraint,  the  user  creates  a  “box” 

objects  and  gives  it  a  name  that  starts  with  the  string 

“Const”. These objects do not represent geometry in the 

scene, but merely a constraint. They can be scaled to look 

very small and positioned between two geometry bodies 

in the scene. The position of the constraint object defines 

the pivot point of the physical constraint. The rotation of 

the constraint object defines the axes of the constraint: in 

case of a Hinge constraint, the X axis is the actuation axis; 

in case of a Hinge2 constraint (used in ODE for wheels), 

the X and Y axes are used. 

By  setting  Blender's  user-defined  properties  for  these 

objects, the user can create key/value pairs that indicate 

the pair of objects this constraint is related with, as well as 

the constraint's limits. If the keys are the strings “Const1” 

or “Const2”, the value represent the name of the first or 

second body this constraint is linked to. If the keys are the 

strings “Limit1” or “Limit2”, the value is used to set the 

limits,  in  which  case  it  should  consist  of  two  floats 

separated  by  a  comma.  Figure  2  exemplifies  a  pair  of 

objects  (the  rover's  main  body  and  a  wheel)  and  a 

constraint between them.

In the simulator's C++ code, the model is represented by a 

class called “Model”. This class is able to read the X3D 

file  and  instantiate  all  of  the  needed  ODE  bodies  and 

constraints, as well as render the geometry of the model 

using OpenGL. The Model class is the run-time end of the 

modeling tool chain, and it talks directly with ODE.
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Figure 2  – A constrain between the rover's  main body and a 

wheel. Notice the properties (box on the bottom) that define the 

parameters.

With  this  flexible  system,  many  kinds  of  models  and 

constraints can be easily created in Blender and exported 

to  be  used  in  C++  code  under  ODE.  The  primitives 

implemented were boxes and cylinders. Other primitives 

can be added in the future.  The Model  class also takes 

care of generating collision geometry for use with ODE's 

collision  system.  Currently  each  geometric  primitive  of 

the  model  corresponds  to  a  rigid  body  and  a  collision 

primitive,  but  this  can  be  changed  in  the  future.  In 

particular,  separating  rendering  geometry  from  rigid 

bodies and collisions allow for rigid geometry of arbitrary 

shapes  to  be  created  without  the  use  of  an  inflexible 

constraint  between  pairs  of  bodies,  which  is  currently 

necessary but computationally expensive.

A six-wheeled rover was modeled.  Its two front wheels 

are traction wheels. They also steer left and right. All of 

the rover's  movement arise from its physical interaction 

with the terrain. The rover's position and orientation do 

not  respond  directly  to  user  input,  only  indirectly.  It 

achieves movement through the wheels' rotational speed, 

steering angle and friction with the terrain.

Steering was implemented by a PD controller on each of 

the traction wheels. This controller sets a desired angle for 

the wheel  and applies rotational  velocity  relative  to  the 

steering  axis  so  that  it  reaches  that  angle.  Acceleration 

was  implemented  by  directly  applying  angular  velocity 

relative to the main rotation axis to the weel.

The Simulation

ODE, the Open Dynamics Library [ODE], is the library I 

used  for  physics  simulation  and  collision  detection. 

Internally,  its  constraint  solver  follows  the  techniques 

described  in  [Baraff  1995].  Differently  from  the  ODE 

demos, in this project I implemented separation between 

step  and  draw functionalities,  which  is  a  better  design. 

However,  the  time  step  was  limited  to  a  maximum of 

1/30s,  to  help  with  the  stability  of  the  physics  library, 

which can provide inaccurate and unstable results if large 

time steps are used.

The  world's  mesh  is  provided  to  ODE  in  form  of  a 

TriMesh object. Only the higher resolution meshes receive 

a TriMesh representation,  since  the rover will  never be 

colliding with low-resolution terrain.

Many simulation parameters had to be fine-tuned. Friction 

between the wheels  and the  ground and the spring and 

damping  constants  for  the  wheel  suspension  were 

particularly tricky. The wheel suspension is parametrized 

in  terms  of  ODE's  Error  Reduction  Parameter  and 

Constraint Force Mixing, which re related to ks and kd. My 

objective is for the user to drive the rover over almost any 

terrain in a pleasant  way and without flipping over  too 

much, provided that the speed isn't excessive. At the same 

time, the experience should not be too dull and slow.



A third-person camera was implemented. The positioning 

was  done  as  follows:  the  camera  is  positioned  at  a 

constant negative translation along the forward axis of the 

rover's main body, and then it is translated up along the 

world's vertical axis. The camera orientation is such that it 

points to a fixed point above the rover (i.e. the center of 

the rover translated up on the world's vertical axis).

The user interaction with the simulator is very simple. The 

W/S/A/D  keys  are  used  for  steering  (these  keys  are 

commonly  used  in  first-person  shooter  games).  W 

accelerates, S decelerates, A turns left and D turns right. 

The 0 key decelerates the traction wheels to zero velocity 

instantly.

Results

The end result  was,  in my opinion, quite  attractive and 

interesting. It does invite the user to explore the world and 

to learn the physical characteristics and limits of the rover. 

The system runs at  30 frames per  second on a 2.5GHz 

Intel Core 2 Duo and a Nvidia GeForce 8600M GT GPU.

A few bits of emergent behavior were oberved. Due to the 

camera positioning, which somewhat follows the rover's 

actions, the whole scenery moves and shakes on screen as 

the rover moves, especially at high speeds. Also, when the 

rover is moving and the user “brakes” it (“0” key, which 

sets  the  traction  wheel's  angular  velocities  to  0),  the 

resulting  angular  motion  of  the  rover's  main  body 

becomes  an  angular  motion  of  the  camera,  making  the 

view “dip  down”  for  a  second,  exactly  as  if  you  were 

inside a car in a sudden stop. The opposite happens if you 

suddenly accelerate the rover.

The  fact  that  braking  was  done  by  setting  the  wheels' 

angular velocities to 0 had other interesting results. One 

can drive at high speeds and suddenly hit the brakes, and 

watch the rover slide. There is even a risk of flipping over 

when this is done.

Future work

There are many topics to explore, for which a planetary 

simulator  with  physically-based  interaction  is  an 

important tool: how to efficiently render an entire planet 

in real  time, how to generate detail, what would be the 

result  of  simulated  erosion  on  the  generated  detailed 

surface, how to perform on-line simulated erosion in order 

to reduce the amount of data that has to be pre-processed, 

how  to  use  such  a  system  as  a  scenario  for  crowd 

simulations,  or  what  other  kinds  of  physically-based 

interaction users can have with it.
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