
The 12th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST
(2011)
M. Dellepiane, F. Niccolucci, S. Pena Serna, H. Rushmeier, and L. Van Gool (Editors)

VSim: Real-time Visualization of 3D Digital Humanities
Content for Education and Collaboration

Eduardo Poyart1, Lisa Snyder1, Scott Friedman1, Petros Faloutsos1,2

1 University of California, Los Angeles
2 York University

Abstract
This paper presents VSim, a framework for the visualization of 3D architectural and archeological models. VSim’s
design focuses on educational use and scholarly collaboration, an approach that is not commonly found in existing
commercial software. Two different camera control modes address a variety of scenarios, and a novel smoothing
method allows fluid camera movement. VSim includes the ability to create and display narratives within the virtual
environment and to add spatially localized multimedia resources. A new way to associate these resources with
points and orientations in space is also introduced.

Categories and Subject Descriptors (according to ACM CCS): I.3.4 [Computer Graphics]: Application packages—
Software support

1. Introduction

The study of built structures is fundamental for humanistic
inquiry. Architecture and urban design reveal the aspirations
and priorities of cultures across the ages, and allow us to
understand these cultures. If one wants to study the ancient
Egyptians, for example, it is important to examine the pyra-
mids and religious complexes of the Nile river valley.

Architects and archeologists have used 3D computer mod-
eling to visualize un-built structures and reconstruct cities of
the past. But these efforts have yet to move from the research
lab to mainstream scholarship and collaboration across disci-
plines. A secondary problem is that the computer models, by
themselves, are essentially raw data, lacking contextual ma-
terial, subject expert commentary, and textual analysis that
could make them engaging and effective tools for teaching
and learning [SF10].

This paper describes VSim, a collaborative framework
and real-time visualization software that addresses these
questions. We address the difficulty in sharing digital archi-
tectural content by providing a user interface that is intuitive
and effective both for spatial navigation in the 3D world,
and for the user’s interaction with the software. To address
advantages and disadvantages inherent to different camera
control methods, a switchable camera control scheme was
used, allowing the user to select between two modes. A novel

cameral control method used in one of these modes ensures
smooth camera motion.

We also propose a system for the end-user to create nar-
ratives which provide predefined navigation paths in the 3D
environment, and to add contextual material consisting of
text, images, videos, sounds and web links. This system was
designed to minimize the entry barrier for new users, while
still being powerful and flexible. We also provide the possi-
bility of adding spatially-localized resources, which do not
follow a narrative but are presented to the user at the ap-
propriate geographic locations. Finally, we discuss the im-
portant issue of enforcing copyrights and branding for the
content used in VSim.

VSim is based on a non-trivial integration of known tech-
niques that have been adapted to our problem domain of
3D Humanities Content Visualization. Some of these adap-
tations are novel and a contribution in their own right. Our
contributions can be summarized as follows:

1. We present VSim, a collaborative framework for real-
time visualization of 3D digital humanities content.

2. We propose a novel camera motion control approach that
ensures smooth camera motion during the navigation of
a 3D scene.

3. We propose a narrative creation system for end users.
4. We present an approach to embedding spatially-localized

resources into the 3D environment.

c© The Eurographics Association 2011.



E. Poyart et al. / VSim: Real-time Visualization of 3D Digital Humanities Content

The remainder of this document is organized as follows.
Section 2 reviews related work. Section 3 presents our two
approaches for camera control and navigation in the 3D en-
vironment. Section 4 describes the system for creating nar-
ratives, and Section 5 discusses the embedded resources. In
Section 7 we describe our graphical user interface, its model
of smooth motion, and how it can be adapted to touch-screen
interfaces. Section 8 concludes the paper.

2. Related work

Existing run-time software interfaces for real-time models
are inadequate, either because they lack the functionality
necessary for educational use or they are obsolete.

Two pieces of real-time software for exploring three-
dimensional models have previously been developed at
UCLA, but both have reached the end of their usefulness.
Active development stopped over five years ago on the orig-
inal proprietary software developed for the Urban Simula-
tion Team (uSim) and it is only available for Linux. Sim-
ilarly, active development was stopped on the freely avail-
able software developed by UCLA’s Academic Technol-
ogy Services (vrNav) because of the complexities of im-
proving its interface, adding functionality, and maintaining
the requisite software dependencies. Many aspects that in-
fluenced our research were studied during development of
uSim [JLF96, JLF95, LFJ95, Fri94].

None of the desktop navigational applications available
for purchase or free download have been built specifically
for educational use of the virtual environments, nor do they
take advantage of new advances in graphics hardware and
software. Google Earth [Gooa] allows the visualization of
environments that can be built by the user with SketchUp
[Goob], but it lacks many of the aspects that we needed,
among them easy creation and distribution of narratives with
seamless on-screen content, smooth camera navigation ade-
quate for a classroom setting and built-in ability to create
and export movie files.

The Center for Advanced Spatial Technologies of the Uni-
versity of Arkansas (http://researchfrontiers.uark.
edu/15683.php) is developing a virtual environment of the
city of Pompeii. The software uses the commercial 3D game
engine Unity, developed by Unity Technologies (http://
unity3d.com). This is in line with our philosophy of tak-
ing advantage of people’s familiarity with video games as
virtual reality environments. In our case, however, the need
to not be tied to a closed-source product and to be able to
load models from several different file formats led us to the
choice of OpenSceneGraph [Osf] as the underlying library
for efficient model rendering.

Camera control has been studied with various approaches,
including: a declarative control language in which cam-
era actions are textually described in a non-interactive way
[CAH∗96], an automated camera planner making real-time

decisions based on predefined high-level information pro-
vided textually by the user [BL97], and camera control by
hierarchical finite state machines, which are a combination
of low-level “camera modules”, controlling geometric place-
ment of the camera, and high-level “idioms”, selecting cam-
era modules and timing between shots [HCS96].

In [TBGT91], a dynamic, rather than kinematic, cam-
era control system is introduced. We found that, for our
purposes, such controller would always have to be over-
damped, so as to avoid oscillations around the desired po-
sition. Our first-person camera smoothing system, described
in Section 3.2, can be considered similar to an over-damped
dynamic system, but implemented in a simple and efficient
way.

In [ZF99], the camera is controlled using the mouse and a
single button. This is achieved through mouse gestures that
perform different control functions. Depending on the way
the user initiates the gesture (e.g. vertically vs. horizontally),
a different type of control is engaged (e.g. zoom vs. transla-
tion on film plane).

3. Navigation in the 3D environment

From a computer graphics point of view, the problem of nav-
igating in a 3D environment is essentially one of controlling
camera position and orientation. These camera parameters
have to be updated at every frame, while taking into account
user input (keyboard, mouse, joystick and touch-screen de-
vices), and software-driven events (e.g. collision with geom-
etry, or the playback of a narrative).

Video games are a major portion of the entertainment in-
dustry, and considering that many video games are essen-
tially 3D virtual environments, it is natural to look at them
for inspiration. Furthermore, users already familiar with
video-game-style controls, when faced with the transition to
a new software, will feel natural if the control mechanics
are similar. However, simply reproducing video-game-style
controls doesn’t solve all of the problems identified for our
real-time visualization software. In particular, while video-
game controls are suitable to fast-action aiming at targets,
they are not suitable for recording movies with smooth mo-
tion, or for pedagogical applications and large-audience sit-
uations.

User studies with university faculty made before the de-
velopment of VSim have covered ease of navigation and use
in a classroom setting. Faculty interviewed was, in general,
hesitant to try to navigate the 3D models themselves dur-
ing classes while they talked about them at the same time.
The navigation system present here, including the camera
controls and the narrative system, was designed to give in-
structors a non-threatening way to engage with the models
as instructional technology.

We have decided to provide the user with two camera con-
trol options, called the uSim mode and the first person mode.

c© The Eurographics Association 2011.

http://researchfrontiers.uark.edu/15683.php
http://unity3d.com


E. Poyart et al. / VSim: Real-time Visualization of 3D Digital Humanities Content

These modes are described below. Both of them follow the
“flying vehicle control” metaphor described in [WO90].

3.1. uSim mode

This mode received this name because it is similar to the
control mode used in uSim, a previous visualization soft-
ware developed by UCLA [JLF95]. The main goal of this
mode is to provide movement that is as smooth as possible.
A secondary goal is to allow the user to control both camera
orientation and velocity with a single hand on the mouse,
an important feature for teachers and lecturers that were in-
terested in using the software as a tool during a classroom
presentation.

In this mode, we define a point c in two-dimensional
space, residing at the center of the screen. Let m be the
mouse position in the same coordinate system. As the user
moves the mouse away from c, the vector vusim = m− c de-
fines a direction and magnitude. The camera movement at
each time interval dt (e.g. at each frame) is defined in the
following way: the horizontal component of vusim defines a
rotation around the vertical (y) axis, and its vertical compo-
nent defines a rotation around the horizontal (x) axis. The y
axis is defined in a world coordinate system, always pointing
up. The x axis is defined in a local, camera-centric coordinate
system.

With this system, the mouse position on the screen defines
the angular velocity of the camera. An interesting conse-
quence is that even if the user does not provide very smooth
movement with his/her hand on the mouse (which is in fact
hard to do), smoothing is a result of the fact that his/her hand
movements are translated to a first-order derivative of the
camera orientation. Any jerkiness is translated to jerkiness
in velocity, not in position. Integrating in time the veloc-
ity to compute the position has a natural smoothing effect.
In both this mode and the first-person mode described be-
low, the spacebar key toggles between the camera-control
mode and the mouse-release mode, the latter meaning that
the mouse is no longer used to control the camera, and can be
moved around to click at user-interface elements like menus
and icons.

Camera linear velocity is controlled by the mouse buttons:
the left button accelerates and the right button decelerates. In
both modes, the user can choose between being allowed to
fly, in which case the camera motion vector always coincides
with the eye forward vector, or being constrained to ground
level, in which case the camera motion vector is a normal-
ized horizontal projection of the eye forward vector. A col-
lision detection system ensures that the camera is always at
a constant distance from the ground. If the user attempts to
climb over a step that is small enough, the camera is allowed
to climb, updating its height for the next section of terrain.

3.2. First-person mode

In this mode, mouse movements are directly translated to
camera movements. If the mouse moves from position m0 to
position m1, the vector v f p = m1−m0 defines the camera
rotation if applied in a similar way as vusim, described above.
If the user stops moving the mouse, v f p = 0 and the camera
stops moving.

This is the control method used in most first-person com-
puter video games. Notice that in this mode, mouse move-
ments are directly translated to the camera orientation, rather
than to its first-order derivative. Any jerkiness in mouse
movement is translated directly to jerkiness in camera ro-
tation. On the other hand, an advantage of this mode is that
the user can quickly point the camera to any direction, as if
he/she is turning his/her head. It is arguably more intuitive
to think that one’s hand is directly controlling the look-at
vector, rather than to think that it is controlling the camera’s
angular velocity.

In order to improve the smoothness of the camera’s mo-
tion in this mode, without compromising the advantage men-
tioned above, we proceeded as follows. Let p0 and w0 be,
respectively, the pitch and yaw components of the camera’s
orientation at time t0, as defined with respect to an arbitrary
global orientation system. The movement vector v f p is then
translated into “desired” values, pdesired and wdesired . The
current p0 and w0 values are interpolated towards pdesired
and wdesired following an inverse exponential law:

p(t) = p0e− jr + pdesired(1− e− jr), r = t− t0 (1)

where t is the current time and j is a scaling constant. An
analogous formula is used for the yaw w. An efficient step-
wise integration method to approximate this behavior can be
implemented as follows. At each frame (a time interval ∆t),
p is moved towards pdesired a distance ∆p proportional to the
magnitude of the distance between them, i.e.:

∆p = k ·∆t · |pdesired− p| (2)

We had best results with k = 8.0. This value can be intu-
itively understood the following way: if the speed were to be
defined on the first frame and kept constant, p would take
1/8th of a second to reach pdesired . The actual time is larger,
since the frame rate is usually higher than 8 fps. Even though
mathematically this would result in motion that gets slower
and slower but never stops, in practice the limits of floating-
point accuracy are reached quickly, which makes the mo-
tion stop. A threshold point could have been introduced, but,
in our tests, we didn’t have any noticeable residual motion
when the user stopped moving the mouse, so the threshold
test was not necessary.

This method essentially absorbed a large amount of

c© The Eurographics Association 2011.



E. Poyart et al. / VSim: Real-time Visualization of 3D Digital Humanities Content

high-frequency, unintended mouse jerkiness and provided a
smoother movement while keeping high interactivity.

Linear velocity of the camera is controlled by the keys
w (forward), a (left), s (back) and d (right). This control
scheme is used in numerous first-person computer games.
However, in our case, the velocity doesn’t change immedi-
ately, but linearly increases and decreases over a short pe-
riod of time, limited by a maximum velocity. We used 0.66s
for this time value, and our conclusion is that it should be
kept small. We essentially follow the same philosophy as for
camera rotations: there should be smoothness in motion, but
at the same time the user should feel crisp and responsive
camera control.

4. Narratives

Another feature of our framework is the ability to create nar-
ratives: a mechanism for both the content contributor and the
end-user to create arguments, tours and lesson plans, aug-
mented with on-screen multimedia content. The user adds
narrative nodes (keyframes) defining the camera position
and orientation, and organizes these nodes in a timeline. Fig-
ure 1 shows the narrative editor UI and its constitutive ele-
ments. Figure 2 is a detailed view of part of the narrative
editor bar.

Figure 1: The narrative editor. The central area of the top
bar contains narrative nodes and transitions. The control
areal on the left contains buttons for creating and removing
nodes. The Edit button launches the overlay editor for the
selected node. Model of the Romanesque Cathedral of San-
tiago de Compostela, courtesy of John Dagenais, UCLA.

Figure 2: A detailed view of the narrative editor bar.

Nodes in a narrative are created by simply positioning the

camera and clicking on the “+” button. With this action, a
narrative node is added to the timeline. Data associated with
nodes include: camera position and orientation, time to re-
main in the node and node overlay content (described in Sec-
tion 4.2). The user can edit the timeline by directly manipu-
lating and reorganizing the nodes.

When playing the narrative, the camera position is inter-
polated between nodes in the manner described below.

4.1. Camera movement

In the current version of the software, the camera follows
straight lines between nodes. We have plans to add second-
order continuity at nodes, but this was not necessary in the
first version, since users were mostly interested in stopping
at nodes and showing content there.

Within the straight line followed by the camera, its po-
sition is interpolated in an ease-in/ease-out fashion using a
cubic function as described below. We start with the follow-
ing function:

y = x− x3 (3)

The x axis is scaled so that the inflection points x =
±1/
√

3 fall at 0 and 1, and the y axis is scaled so that the
minimum and maximum in that range also fall at 0 and 1. We
input a linear interpolant into this function as x, with values
ranging from 0 to 1. The output y is a cubic interpolant that is
used both for camera position and rotation (as a quaternion
slerp interpolant). By using this method for ease-in/ease-out
instead of a quarter-sine, we avoid the expense of a sine com-
putation.

4.2. Overlays

Each keyframe, or node, can be enriched with textual infor-
mation, images, videos and sounds – called overlays. The
user can freely lay out these elements on the screen in 2D
space while in a keyframe. When a narrative is playing and a
keyframe is reached, its overlay fades in and is displayed for
an user-determined time, or until the user presses a key. This
function essentially allows the content contributor and end
users to augment the virtual world with multi-media content.
Figure 3 shows the overlay editor with a text element added
to the scene.

5. Embedded Resources

Users may wish to explore the world through free naviga-
tion, i.e. not following a narrative. It is natural to think that
these users should also be presented with contextual multi-
media elements (embedded resources) associated with geo-
graphical locations in the environment. As an example, when

c© The Eurographics Association 2011.



E. Poyart et al. / VSim: Real-time Visualization of 3D Digital Humanities Content

Figure 3: The overlay editor.

the user is viewing a reconstruction of a historical build-
ing, an embedded resource could show documents related
to the original construction of this building: blueprints, pho-
tographs, letters, videos of the actual site and so on. Due
to the fact that the user should not be interrupted in his/her
continuous navigation, embedded resources don’t pop up on
screen, but rather, icons appear on the embedded resource
bar at the bottom of the screen. The user can choose to view
them or not.

An important question is how to define the area in which
an embedded resource icon should appear. A naive approach
would be to associate the resource with a point in space, and
make it appear whenever the camera is inside a sphere of
a certain radius, centered at this point. However, this would
show resources that are behind the user. Another approach is
to combine the sphere with a specific camera angle, which
doesn’t entirely solve the problem, as the user could be, for
example, at the side or back of a building, and the content
creator only wants to associate a resource with the front side.
Figure 4 illustrates this problem.

The approach that we took is described as follows. The
content creator defines a resource’s location in the environ-
ment through a data structure composed of:

1. Target t (3D position).
2. Camera position center c (3D position).
3. Camera area radius r (scalar value).

Whenever the following conditions are true, the embed-
ded resource becomes available to the user and appears in
the embedded resources bar:

1. The scene has the target point t in the field of view.
2. The camera is inside a sphere of radius r centered at c.

Past approaches essentially had the center c and target
t combined as the same value. By separating them, we al-
low resources to appear whenever the user is, for example,
in front of a building and looking at the building. Figure 5
shows the top view of a street (parallel lines) and a building
(square). Points c and t are shown, as well as the sphere de-
fined by radius r. If the user, in his/her virtual walk on the
street, steps inside the sphere and turns the camera towards

Figure 4: Embedded resource positioning: less-than-ideal
solution. This is a top-down view of a building (square) and
a street (parallel lines). A point in space c and a radius r are
used to describe the area of interest. This point is both the
point of interest and the center of camera influence. Notice
that the user can see resources associated with the front fa-
cade (the side closest to the street) when he is at the side of
the building or even inside of it, which the author, in general,
does not want to happen.

the building, both conditions are met and the embedded re-
source appears. This corresponds to the author’s intention –
he/she can now express the fact that the resource should ap-
pear when the user is in front of the building, looking at the
front facade.

If desired, a flag can be added to the embedded resource
data structure to inhibit the need for a target; this would al-
low the authoring of resources that “attract attention”, in-
dependent of the direction the user is looking; however we
have concluded that this mode should not be the default.

An inside-sphere test has to be made on every frame and
for each resource, and there could be many resources asso-
ciated with a scene. The use of spheres makes this compu-
tation efficient. Other, more complex shapes could be used
as area of influence, but spheres are adequate in most cases,
and they also simplify a content creator’s method of thinking
about the problem.

6. Restrictions and enforcing copyright

We incorporated a lightweight model of restrictions, through
which the content creator can have some level of assurance
that his/her content will not be easily modified, and that
his/her branding elements will not be easily removed.

The content creator can set a series of flags that are asso-
ciated with his redistributable file (a file that combines the
3D model with meta-information about narratives and em-
bedded resources). These flags enable or disable VSim func-
tionality for, among other things:

c© The Eurographics Association 2011.



E. Poyart et al. / VSim: Real-time Visualization of 3D Digital Humanities Content

Figure 5: Embedded resource positioning: our solution sep-
arates the center c from the target point t. The embedded re-
source is activated if the camera is inside the sphere and the
target t is in the field of view. The author can express the fact
that the resource should appear when the user is in front of
the building and looking at the facade.

1. Adding and removing a branding bar, which can show,
for example, the institution logo.

2. Modifying narratives.
3. Modifying embedded resources.
4. Keeping the user restricted to paths defined by narratives,

i.e. no free-form navigation.
5. Creating video files.
6. Increasing the screen resolution beyond a certain limit.

The initial implementation is lightweight, and it is a step
toward a more secure implementation. We decided not to
add encryption and the associated burden of encryption keys.
Taking into account the fact that the software is open-source,
it is not impossible for someone with the source code in hand
to circumvent the restrictions. However, it is not easy for
someone without programming expertise to do so, which is
adequate for our requirements. Security can be enhanced in
future versions by means of encrypted data files, building on
top of our current system.

7. Graphical user interface

Two ideas guided the graphical user interface design: it
should be intuitive and easy to use, and it should be adapt-
able to emerging technologies such as tablet devices and
touch-screen interfaces.

We envision a typical user of the software to be a lecturer
in a discipline in humanities. This user may have little or no
experience with other 3D navigation software and with tools
to create narratives and movies. We designed a narrative bar
residing on a control bar at the top of the screen. It consists

of nodes (large rectangles corresponding to keyframes, con-
taining a thumbnail of the scene) and transitions (smaller
rectangles in between nodes). Accessing a node opens up a
window to control node aspects (time to remain in node, fade
in/out time, and others). Accessing a transition, similarly, al-
lows the user to control variables such as transition timing.
Adding and removing nodes is done through buttons labelled
“+” and “-”, a concise and efficient representation.

All GUI animations are smooth. For example, the side
scrolling of the narrative bar (when there are more nodes
than the screen can fit) is visually a rolling movement rather
than a jump. This gives the user important visual cues. Sim-
ilarly, the whole control bar (which is semi-transparent) can
be closed to reveal the whole 3D scene, also with a smooth
movement. We found that the most pleasant motion was
achieved not linearly, but by making the speed follow an in-
verse exponential law, similarly to the first-person camera
(equations 1 and 2).

The UI was designed on a style that is adequate for porting
of the software to tablet platforms. All interactive elements
(widgets) are large (by being “finger-sized”, they can be used
with touch-screen input, as opposed to mouse clicks). Rather
than separate windows with OS-specific features, the wid-
gets are rendered using OpenGL on top of the 3D environ-
ment. A custom widget system was developed for that pur-
pose. By sidestepping this OS dependency, the widget sys-
tem should work out-of-the-box on touch-screen platforms,
and the look-and-feel is preserved. Minor OS-specific ele-
ments are still used, e.g. on dialog boxes to open files, which
shouldn’t present a big portability problem.

8. Conclusion and future work

We have presented VSim, a framework for visualizing 3D
architectural and archeological content, enhanced with cre-
ation of narratives and integration of embedded resources.
VSim is being used at UCLA in an experimental phase for
classroom presentations. Initial response of users that have
been exposed to the prototype software has been positive.

Camera control was one of the questions approached dur-
ing development. There are advantages and disadvantages to
both camera control modes that were tested, so we followed
the route of implementing both, and allowing easy switch
between them. The first-person mode is easy to use and pro-
vides fast and direct camera control. The uSim mode, on the
other hand, has smooth motion appropriate for video record-
ing, and one-hand control appropriate for classroom presen-
tations. We believe that a combination of both modes was
the ideal solution.

We have also approached GUI aspects, with an aim to
keep the software portable and adaptable. By developing a
custom widget library in OpenGL, we have seamless inte-
gration of UI elements with the 3D environment, and the
possibility for future adaptation for touch-screen interfaces.

c© The Eurographics Association 2011.



E. Poyart et al. / VSim: Real-time Visualization of 3D Digital Humanities Content

We found that the benefits of developing such a custom li-
brary offset its cost.

Narratives allow end users and content creators to pro-
vide argumentation and story-telling within the 3D environ-
ment. Embedded resources allow the augmentation of the
3D environment with relevant content for users that choose
to perform free navigation. The elegant scheme developed
for the activation of embedded resources based on camera
position and orientation has met all of our requirements, al-
lowing the content creator to express when and where the
resources should appear in a variety of scenarios.

As future work, we have plans for adding pre-processing
modules to increase the realism of the scene, which can
be used to provide ambient occlusion and other physically-
based lighting effects. The system can also be used as a plat-
form for the integration of physical simulation modules, for
example to simulate earthquakes and other natural disasters
and study their effects, as well as erosion and weathering of
materials.

References

[BL97] BARES W. H., LESTER J. C.: Cinematographic user
models for automated realtime camera control in dynamic 3d en-
vironments. In Proceedings of the Sixth International Conference
on User Modeling (1997), Springer, pp. 215–226. 2

[CAH∗96] CHRISTIANSON D. B., ANDERSON S. E., HE L.-W.,
SALESIN D. H., WELD D. S., COHEN M. F.: Declarative cam-
era control for automatic cinematography. In Proceedings of the
thirteenth national conference on Artificial intelligence - Volume
1 (1996), AAAI ’96, AAAI Press, pp. 148–155. 2

[Fri94] FRIEDMAN S.: Large scale urban visualization. Technical
Report, UCLA Department of Architecture, 1994. 2

[Gooa] GOOGLE: Google earth. http://earth.google.com. 2

[Goob] GOOGLE: Google sketchup. http://sketchup.google.com.
2

[HCS96] HE L.-W., COHEN M. F., SALESIN D. H.: The vir-
tual cinematographer: a paradigm for automatic real-time camera
control and directing. In Proceedings of the 23rd annual con-
ference on Computer graphics and interactive techniques (New
York, NY, USA, 1996), SIGGRAPH ’96, ACM, pp. 217–224. 2

[JLF95] JEPSON W., LIGGETT R., FRIEDMAN S.: An environ-
ment for real-time urban simulation. In Proceedings of the 1995
symposium on Interactive 3D graphics (New York, NY, USA,
1995), I3D ’95, ACM, pp. 165–ff. 2, 3

[JLF96] JEPSON W., LIGGETT R., FRIEDMAN S.: Virtual mod-
eling of urban environments. Presence: Teleoperators and Vir-
tual Environments (1996), 72–86. 2

[LFJ95] LIGGETT R., FRIEDMAN S., JEPSON W.: Interactive de-
sign/decision making in a virtual urban world: Visual simulation
and gis. In 15th Annual ESRI User Conference (1995), pp. 22–26.
2

[Osf] OSFIELD R.: Open scene graph.
http://www.openscenegraph.org. 2

[SF10] SNYDER L., FRIEDMAN S.: Enhancing the humanities
through innovation. Grant proposal for the National Endowment
for Humanities, UCLA, 2010. 1

[TBGT91] TURNER R., BALAGUER F., GOBBETTI E., THAL-
MANN D.: Physically-based interactive camera motion control
using 3d input devices. In Scientific Visualization of Physi-
cal Phenomena (Proceedings of CG International Õ91 (1991),
Springer, pp. 135–145. 2

[WO90] WARE C., OSBORNE S.: Exploration and virtual camera
control in virtual three dimensional environments. In Proceed-
ings of the 1990 symposium on Interactive 3D graphics (New
York, NY, USA, 1990), I3D ’90, ACM, pp. 175–183. 3

[ZF99] ZELEZNIK R., FORSBERG A.: Unicam – 2d gestural cam-
era controls for 3d environments. In Proceedings of the 1999
symposium on Interactive 3D graphics (New York, NY, USA,
1999), I3D ’99, ACM, pp. 169–173. 2

c© The Eurographics Association 2011.


